

Tetrahedron: Asymmetry 11 (2000) 4825-4829

Reverse enantioselectivity in the lipase-catalyzed desymmetrization of prochiral 2-carbamoylmethyl-1,3-propanediol derivatives

Kunihiko Takabe,^{a,*} Yasuhiro Iida,^a Hidetaka Hiyoshi,^a Masatoshi Ono,^a Yoshihiko Hirose,^b Yoshitaka Fukui,^c Hidemi Yoda^a and Nobuyuki Mase^a

^aDepartment of Molecular Science, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432-8561, Japan ^bAmano Pharmaceutical Co., Ltd, Sue, Kakamigahara, Gifu 509-0108, Japan

^cDaicel Chemical Industries, Ltd, Higashisakae 2-chome, Ohtaku, Hiroshima 739-0695, Japan

Received 2 November 2000; accepted 20 November 2000

Abstract

Enantioselective acetylation of 2-carbamoylmethyl-1,3-propanediol derivatives was catalyzed effectively by lipase PS to give monoacetates with high enantioselectivity: The enantioselectivity depended on the 2-carbamoylmethyl groups. The reaction of *N*-monoalkylcarbamoylmethyl-1,3-propanediol afforded the monoacetate with the (*S*)-configuration, whereas *N*,*N*-dialkylcarbamoylmethyl-1,3-propanediol gave the monoacetate with the (*R*)-configuration. © 2001 Elsevier Science Ltd. All rights reserved.

Asymmetric desymmetrization of *meso*-compounds or prochiral 1,3-propanediols and diacetates in the presence of lipase¹ has become a practical approach for the preparation of chiral compounds due to its high specificity and reproducibility.^{1,2} Most previous approaches in the asymmetric desymmetrization of the 1,3-propanediols refer to specific substrates; R^1 =alkyl, alkenyl, alkynyl, aryl, benzyloxy, and acetoxy groups (Fig. 1).^{1,2} Investigation of the desymmetrization of a prochiral 1,3-propanediol incorporating a functional group should provide a

Figure 1. Asymmetric desymmetrization of 1,3-propanediols and diacetates

^{*} Corresponding author. Tel/fax: +81-53-478-1148; e-mail: tcktaka@ipc.shizuoka.ac.jp

^{0957-4166/00/\$ -} see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: \$0957-4166(00)00473-0\$

new strategy for enantiomerically enriched compound synthesis. We report herein the asymmetric desymmetrization of the 2-carbamoylmethyl-1,3-propanediol and the corresponding diacetate.

Enantioselective lipase PS (Amano, *Pseudomonas cepacia*)-catalyzed transesterification of the diacetate³ **1** was investigated.⁴ Results are shown in Table 1. The transesterification of *N*-monoalkylcarbamoyl-diacetates **1a,b** afforded (*R*)-monoacetates **2a,b** with 90 and 95% ee, respectively (entries 1 and 2), whereas *N*,*N*-dialkylcarbamoyl-diacetates **1c,d** did not react after 168 h stirring (entries 1 and 2). The absolute configuration of **2a,b** was determined to be (*R*) by comparison of the value of the specific rotation of 4-(phenylsulfanylmethyl)dihydrofuran-2-one.⁵

The enantioselective acetylation of the 2-carbamoylmethyl-1,3-propanediols **3** was examined as shown in Table 2.⁶ *N*-Monomethylcarbamoyl-diol **3a** gave the (*S*)-monoacetate **2a** with >99%

 Table 1

 Enantioselective transesterification of 2-carbamoylmethyl-1,3-diacetates

	AcO AcO 1	$^{\text{N}}_{\text{R}^{2}} \stackrel{\text{Lipase PS}}{=} \stackrel{\text{HO}}{=} $	$ACO O R O R^{1}$ $B R^{1} R^{2}$ R^{2}	a: R ¹ = Me, R ² = H b: R ¹ = Et, R ² = H c: R ¹ , R ² = Me d: R ¹ , R ² = Et		
Entry	Substrate	Time (h)	Yield (%)	Ee (%) ^a	Config.	
1	1a	67	35	90	R	
2	1b	55	45	95	R	
3	1c	168	No reaction	-	_	
4	1d	168	No reaction	-	-	

^a Determined by HPLC analysis using Chiralpak AS (flow rate: 0.8 mL/min, eluent: hexane/2-propanol=70/30).

Table 2

Entry	Substrate	R ³	Time (h)	Monoacetate 2			Diacetate 1
				Yield (%)	Ee (%) ^a	Config.	Yield (%)
1	3a	Vinyl	24	30	80	S	38
2	3a	Phenyl	12	26	>99	S	37
3	3a	Phenyl ^b	24	55	88	S	25
4	3b	Phenyl	3	43	94	S	20

^a Determined by HPLC analysis using Chiralpak AS (flow rate: 0.8 mL/min, eluent: hexane/2-propanol=70/30).

^b *i*-Pr₂O was used as a solvent.

ee in the presence of phenyl acetate (entry 2). The reaction of N-monoethylcarbamoyl-diol **3b** also gave the (S)-monoacetate **2b** with 94% ee (entry 4).

Next, we examined the reaction of N,N-dialkylcarbamoyl-diols **3c**,**d** as shown in Table 3. The reaction of N,N-dimethylcarbamoyl-diol **3c** gave the monoacetate (R)-**2c** in 42% yield with 97% enantiomeric excess (entry 1). It was noted that the absolute configuration of the monoacetate **2c** was (R); thus, the pro-(S) hydroxy group was preferentially acetylated in the case of N-monoalkylcarbamoyl-diol **3a**,**b** (Table 2), while the pro-(R) hydroxy group was more reactive in the case of N,N-dialkylcarbamoyl-diol **3c**,**d** (Table 3).⁷ Similarly, N,N-diethylcarbamoyl-diol **3d** also afforded the monoacetate (R)-**2d** with 96% ee (entry 4).

Table 3

 Enantioselective acetylation of N,N-dialkylcarbamoylmethyl-1,3-propanediols 3

Entry	Substrate	R ³ Tir	Time (h)	Monoacetate 2			Diacetate 1
				Yield (%)	Ee (%) ^a	Config.	Yield (%)
1	3c	Vinyl	5	42	97	R	5
2	3c	Phenyl	14	77	96	R	Trace
3	3c	Phenyl ^b	48	66	95	R	10
4	3d	Vinyl ^b	74	52	96	R	27
5	3d	Phenvl	68	43	84	R	16

^a Determined by HPLC analysis using Chiralpak AS (flow rate: 0.5–0.8 mL/min, eluent: hexane/2-propanol=80/20–90/10).

^b *i*-Pr₂O was used as a solvent.

Among the studies on structure-enantioselectivity relationships,⁸ the mechanism of the expression of enantioselectivity⁹ in the present case is not clear at this stage. We propose here the importance of hydrogen bonding between the enzyme and substrate. In a plausible mechanism shown in Fig. 2, the *N*-monoalkylcarbamoyl group in **3a**,**b** would hydrogen bond with an amide group in the lipase; thus, the pro-(S) hydroxy group is stereoselectively acetylated (Fig. 2, Type I). On the other hand, in the reaction of *N*,*N*-dialkylcarbamoyl-diols **3c**,**d** the *N*,*N*-dialkylcarbamoyl group is more likely located at the hydrophobic site in the active-site model for the lipase (Fig. 2, Type II); therefore, the pro-(*R*) hydroxy group is discriminated to give the (*R*)-monoacetate **2c**,**d**.

In conclusion, we have shown a high level of asymmetric desymmetrization in the reaction of 1,3-propanediols and diacetates bearing a carbamoyl group. This present reaction should provide a new strategy for asymmetric desymmetrization of 1,3-propanediols and diacetates, and these monoacetates 2 could potentially become a new chiral building block for the synthesis of natural products.

Figure 2. Proposed active-site model for lipase

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

References

- (a) Bornscheuer, U. T.; Kazlauskas, R. J. Hydrolases in Organic Synthesis; Wiley-VCH: Weinheim, 1999; (b) Schmidt, R. D.; Verger, R. Angew. Chem., Int. Ed. Engl. 1998, 37, 1608–1633; (c) Stecher, H.; Faber, K. Synthesis 1997, 1–16; (d) Schoffers, E.; Golebiowski, A.; Johnson, C. R. Tetrahedron 1996, 52, 3769–3826; (e) Azerad, R. Bull. Soc. Chim. Fr. 1995, 132, 17–51; (f) Drauz, K.; Waldmann, H. Enzyme Catalysis in Organic Synthesis; VCH: Weinheim, 1995; (g) Wong, C.-H.; Whitesides, G. M. Enzymes in Synthetic Organic Chemistry; Oxford: Pergamon, 1994.
- (a) Ogasawara, K. J. Syn. Org. Chem. Jpn. 1999, 57, 957–968; (b) Alexandre, F.-R.; Huet, F. Tetrahedron: Asymmetry 1998, 9, 2301–2310; (c) Guanti, G.; Narisano, E.; Riva, R. Tetrahedron: Asymmetry 1998, 9, 1859–1862; (d) Yokomatsu, T.; Minowa, T.; Murano, T.; Shibuya, S. Tetrahedron 1998, 54, 9341–9356.
- 3. 2-Carbamoylmethyl-1,3-propanediols **3** and diacetates **1** were prepared by amidation of 4-hydroxymethyldihydrofuran-2-one **7** and subsequent acetylation (Scheme 1).

Scheme 1. Preparation of 2-carbamoylmethyl-1,3-propanediols 3 and diacetates 1

4. We also examined the enantioselective hydrolysis of 2-carbamoylmethyl-diacetates 1 in a buffer solution; however, low conversion (18–49%) and enantioselectivities (11–20% ee) were observed after prolonged reaction time (4–7 days).

5. 4-(Phenylsulfanylmethyl)dihydrofuran-2-one 9 was prepared in two steps as shown in Scheme 2. The lactone 9 with (*R*)-configuration shows a positive value of the optical rotation (lit. (*R*)-isomer: [α]²³_D=+15.8 (*c* 0.985, CHCl₃, 99% ee)); see, Takabe, K.; Hiyoshi, H.; Sawada, H.; Tanaka, M.; Miyazaki, A.; Yamada, T.; Katagiri, T.; Yoda, H. *Tetrahedron: Asymmetry* 1992, *3*, 1399–1400.

Scheme 2. Preparation of 4-(phenylsulfanylmethyl)dihydrofuran-2-one 9

- 6. Typical procedure: A solution of 2-carbamoylmethyl-1,3-propanediols **3** (1.0 g) and lipase PS (0.050 g) in acetate (2 equivalents) was stirred at 25°C for an appropriate time; then, lipase PS was removed by filtration, and concentrated to give a crude oil, which was purified by column chromatography (silica gel, eluent: hexane-AcOEt) to give the monoacetate **2** and the diacetate **1**.
- 7. Ohno, M.; Kobayashi, S.; Iimori, T.; Wang, Y.-F.; Izawa, T. J. Am. Chem. Soc. 1981, 103, 2405-2406.
- (a) Ehrler, J.; Seebach, D. Liebigs Ann. Chem. 1990, 379–388; (b) Egri, G.; Bálint, J.; Peredi, R.; Fogassy, E.; Novák, L.; Poppe, L. J. Mol. Catal. B: Enz. 2000, 10, 583–596.
- 9. Ema, T.; Okada, R.; Fukumoto, M.; Jittani, M.; Ishida, M.; Furuie, K.; Yamaguchi, K.; Sakai, T.; Utaka, M. *Tetrahedron Lett.* 1999, 40, 4367–4370.